差速器是用来调整左右轮的转速差的,由于车辆在转弯的时候,左右车轮转向的半径是不同的,如果没有差速器来调节左右轮的转速,那么转向一侧的车轮势必只能通过打滑来度过,这对车辆、轮胎、行驶舒适性的负面影响都很大。那么,宝马差速器油多久换一次? 宝马后差速器油建议6年换,或6至8万公里更换一次。后差速器油是针对后驱车后轮差速器润滑而研发的润滑油,对差速器进行必要的保护。 差速器油不换的影响是差速器结构中的齿轮摩擦力增大,增加车辆的油耗,长时间下去会损坏差速器、差速锁等装置,且会影响驾驶质感。 差速器油是后桥齿轮传动机构的润滑,又称齿轮油,主要功能是润滑、冷却,齿轮的轴线相互位置和齿形不同,在齿面啮合部分的接触应力和相对滑移速度有很大的区别,因此要使用不同的齿轮油。 差速器油作为一种润滑油,也有相应的粘度等级,在高速行驶时,差速器中的润滑油温度会很高,会远远超过发动机中机油的温度,此时差速器润滑油的高温粘度特性就显得特别重要。 以上就是给各位带来的关于宝马差速器油多久换一次的全部内容了。
汽车保养无非就是三油五液,三油是指机油、变速器油和差速器油;五液是指车窗清洗液、防冻冷却液、制动液、动力转向液、电解液。那么差速器油多久换一次呢? 一般情况下,差速器油的更换周期是每3年或6万公里更换一次。 差速器油是针对后驱车后轮差速器润滑而研发的润滑油,能有效的对差速器进行一定的保护。 汽车在高负荷连续行驶时,变速箱、差速器齿轮油的温度有时候会超过120℃,在高温条件下差速器油的润滑性能下降,从而引起齿轮油出现变质情况。 如果不注意保养的话,差速器油的性能衰退后,差速器结构中的齿轮摩擦力增大,会增加车辆的油耗,长时间下去会损坏差速器、差速锁等装置。 以上就是给各位带来的关于差速器油多久换一次的全部内容了。
汽车差速器油并不是终身不用换的,大概使用三年或者六万公里就要更换一次。那么问题来了,如果差速器油不换有什么影响吗? 差速器油长时间不换会影响驾驶质感,增加车辆的油耗,造成差速器齿轮过度磨损,差速器工作不良等;严重的话,可能要更换差速器。 差速器油是后桥齿轮传动机构的润滑,又称齿轮油,主要功能是润滑、冷却,齿轮的轴线相互位置和齿形不同,在齿面啮合部分的接触应力和相对滑移速度有很大的区别,因此要使用不同的齿轮油。 差速器油作为一种润滑油,也有相应的粘度等级,在高速行驶时,差速器中的润滑油温度会很高,会远远超过发动机中机油的温度,此时差速器润滑油的高温粘度特性就显得特别重要。 以上就是给各位带来的关于差速器油不换有什么影响吗的全部内容了。
差速锁一般分为轴间差速和轮边差速差速锁。单驱车是没有轴间差速锁的。差速锁的作用是在车辆出现误车或者需要大的动力爬坡时,如果打开差速锁,车辆两边的驱动轮同事转动,以增大摩拜力,使车辆拔出误车区或者以最大力量爬坡。如果车辆出现误车,而没有打开差速锁的情况下,那么只有一边轮子是用力的,而另一边的轮子因为主减速器里差速的作用,就不会用力。打开差速锁,那么两边的轮子都同时用力,同时转动。但是要记住,在打开差速锁的情况下,最好保持直行,尽量做转弯的动作,以为如果转弯,很容易损害主减速器里边的行星轮跟十字轴。
差速锁一般分为轴间差速和轮边差速差速锁的作用。单驱车是没有轴间差速锁的。差速锁的作用是在车辆出现误车或者需要大的动力爬坡时,如果打开差速锁,车辆两边的驱动轮同事转动,以增大摩拜力,使车辆拔出误车区或者以最大力量爬坡。如果车辆出现误车,而没有打开差速锁的情况下,那么只有一边轮子是用力的,而另一边的轮子因为主减速器里差速的作用,就不会用力。打开差速锁,那么两边的轮子都同时用力,同时转动。但是要记住,在打开差速锁的情况下,最好保持直行,尽量做转弯的动作,以为如果转弯,很容易损害主减速器里边的行星轮跟十字轴。 汽车的差速器的作用是什么? 汽车差速器的作用-转弯「差速器」这一名词在讨论越野车型中常常提及,往往会和“差速锁”并列解析。其功能对于越野车爱好者而言多多少少有些反感,因为绝大多数情况下的陷车都是因为“差速器导致”;当然这是因为这些车可能没有差速锁,下面就来学习几个知识点,感受一下“器&锁”会带来哪些不同的体验吧。 转弯轨迹如果善于观察细节总会发现这样一种现象:汽车在转弯时四个车轮行驶出的距离是不等长的,外侧车轮划过的长度会大于内侧车轮,前后同侧车轮的长度也不相同。也就是说汽车转弯时四个车轮的「转速」完全不同,因为车轮的周长是相同的,只有在周长等长的前提下以不同转速,才能实习不同长度的轨迹。 图1:四个车轮行驶轨迹的四条线 图2:以四个车轮的轮毂中心延伸出直线,以交汇点为圆心、达到四个车轮中心点的距离为「半径」,似乎四条半径的长度完全不一致,那么周长(轨迹长度)也必然不同了。 直线行驶假设四个车轮不能实现以不同转速运转会怎样?轮胎周长相同,转弯半径各不相同。此时如果四个车轮都只能以相同转速运转的话,汽车似乎就没法转弯了吧?!——答案真实如此,因为转弯需要四轮行驶出不同的长度,车轮转速一致后的「行驶距离等长」,在这种状态下汽车只能走直线。如果在摩擦系数很大的铺装路面上强行转弯,内侧车轮就会强行“弹起”单侧车身造成「汽车侧翻」。 解决方式:差速器!上述场景在最早研发汽车时受到了困扰,不过随即就有解决方案出现了。那就是传动轴安装「差速器」,发动机的动力会通过变速箱、传动轴传递到差速器,差速器连接两侧半轴,半轴连接车轮。汽车在行驶中车轮会有滚动阻力,在转弯时四个车轮的“滚阻”会完全不同;差速器则能够按照“滚阻”的大小,自动向两侧车轮分配动力,标准为阻力大的车轮获得动力少、阻力小的车轮获得的动力多——动力决定车轮转速的高低!参考下图:差速器分动的概念。 差速锁的概念「差速器」可以保证四个车轮都能以不同的转速运转,依靠滚动阻力自行调整。但对于越野车型而言也就是个大缺点了,因为滚动阻力小的车轮反而会获得更多的动力,滚阻小就意味着车轮要打滑,此时为其输出更大的动力则必然严重打滑,车辆也就无法脱困了。想要解决这一问题还就得让四个车轮以相同的转速运转,或者说获得相同的动力;只有这样才能保证车辆的正常脱困,但是越野车在泥泞路面上难道不需要转弯吗? 答案自然是否定的,越野车也是需要转弯的;不过越野路面多为泥泞非铺装路面,与车轮的摩擦系数会非常的低。在四轮以相同转速运转的状态下强行转弯,此时内侧车轮只会“强行打滑”摩擦地面,并不会因为摩擦系数过大而翘起车身;所以越野车只需要在非铺装路面强行转弯(铺装路面则为后驱加差速器),依靠前轮的导向功能“滑动”到目标轨迹即可,这就是「差速器」和「差速锁」的功能,供参考。 编辑:天和Auto 内容:共享天和MCN头条号 欢迎转发留言讨论,保留版权保护权利
[ 汽车之家 百科] 后桥限滑差速器位于车辆两个后车轮之间,它可以弥补普通差速器的由于车轮悬空而导致空转,此时差速器会将动力不断的传给没有阻力的空转车轮,车辆不但不能向前运动,而且大量动力也会流失的这种弊端。一般后桥限滑差速器会配备在一些高性能车辆上。装有后桥限滑差速器的车辆在激烈驾驶时,还可以进行大范围的漂移动作。 下面通过这段《家家百科》视频,快速了解一下差速器/差速锁: 更多精彩视频,尽在汽车之家视频频道 差速器 在此之前我们先来了解一下什么是差速器,以及为什么需要差速器?顾名思义,“差速器”就是用来让车轮转速产生差异的,在转弯的情况下可以使左右车轮进行合理的扭矩分配,来达到合理的转弯效果。汽车在弯道行驶,内外两侧车轮的转速有一定的差别,外侧车轮的行驶路程长,转速也要比内部车轮的转速高,这个时候就需要差速器来调节。 那么这个过程是如何实现的呢?首先我们来看看普通差速器的构成。差速器主要由行星齿轮、齿轮架以及左右半轴齿轮构成。在传动轴和驱动桥的结合点上,我们能看到一个半径比较大的从动齿轮,由于输入轴主动齿轮半径比较小,因此动力从此齿轮传递到半径比较大的从动齿轮的过程中就能实现一个减速增矩的过程。 接下来减速器从动齿轮带动着行星齿轮架一起运转,由于左右输出轴和行星齿轮架是相连的,因此左右输出轴会跟着一起转动,而左右半轴齿轮就会跟着一起运转,而实现“差速”的关键就是两个和左右半轴齿轮相垂直的行星齿轮。这两个行星齿轮和左右车轮都咬合着,齿轮咬合方式能够让左右两个齿轮达到一个互相抵制的效果。 当汽车直线行驶的时候,左右半轴齿轮的扭矩和转速都是相同的,因此和行星齿轮结合的时候左侧和右侧能够互相抵消,这个时候行星齿轮是不运动的。遇到转弯情况,内侧车轮要比外侧车轮受到的阻力大,这个时候左右半轴齿轮的扭矩不同,就会导致行星齿轮的转动,行星齿轮能给内侧齿轮一个阻力扭矩实现减速,同时也能给外侧齿轮增速,这样外侧齿轮比内侧齿轮的转速快,实现了顺利的转弯。 限滑差速器 普通差速器有一种弊端,那就是由于车轮悬空而导致空转,一旦发生类似的情况,差速器将动力源源不断的传给没有阻力的空转车轮,车辆不但不能向前运动,大量的动力也会流失。这时候就需要一种差速器来解决这样的情况,就是下面介绍的限滑差速器。 限滑差速器的英文简写为LSD,是Limited Slip Differential的缩写,而LSD的主要功能就是在工作时使左右车轮一同运转,而且将左右车轮的转速差控制在一定范围之内,以车辆保证正常的行进。根据实现方式以及机件结构的不同,LSD可细分为扭力感应型、黏耦合型、螺旋齿轮式、标准机械式LSD等多种形式。虽然实现限滑差速的过程不同,最终目的是一致的。 当驾驶一辆装有LSD的车,其中一只驱动轮发生空转时,LSD会控制两只车轮动力输出,阻止空转的车轮不会继续空转,使另一只车轮也有足够大的动力从而帮助车辆前进;在加速过弯时,输出扭力和离心力迫使车辆内轮扬起离开地面或产生打滑现象,而LSD装置也会将动力尽量转移到外侧车轮,因此可以帮助驾驶者提高过弯的速度,以此加强了操控性能。 差速锁 差速锁的作用是当一个驱动轮打滑时,将差速器壳与半轴锁紧成一体,使差速器失去差速作用,可以把全部扭矩转移到另一侧驱动轮上。差速锁很好的解决了汽车在一侧车轮打滑时出现的动力传输的问题,也就是锁止差速器,让差速器不再起作用,左右两侧的驱动轮均可得到相同的扭矩。 后桥差速锁 后桥差速锁是差速器的锁止机构,位于后轮之间,来应对车轮失去附着力无法脱困的情况。差速锁和差速器起到完全相反的作用,也就是不让差速器工作,让两侧的车辆转速相同。比如一侧的车轮卡死另一侧车轮打滑的情况下,差速器就会起作用了,因为差速器的作用就是允许两侧车轮出现速度差,这样,被卡死的一侧车轮仍静止不动,而另一侧车轮则会因为差速器的作用而疯狂的旋转,一侧卡死,一侧狂转,汽车自然也就无法前行被困住。 为了让动力能够正常的传递到那个“静止”的车轮上,就必须有差速锁,它可以将两个半轴进行钢性连接,使其成为一个整体,这样两侧的车轮都可以得到相同的动力,使车辆可以摆脱困境,这就是差速锁的作用。典型具备前桥限滑差速锁的车例如奔驰G级、奔驰G级 AMG、牧马人Rubicon等车型。 电子差速锁 市面上还存在所谓电子差速锁,其实电子差速锁并没有一个客观存在的实体,它是一项ABS/ESP系统的扩展功能。 英文简称为EDS,又称为EDL。它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的加速打滑进行控制。EDS的工作原理比较容易理解。在汽车加速过程中,当电子控制单元根据轮速信号判断出某一侧驱动轮打滑时,EDS就自动开始工作,通过液压控制单元对该车轮进行适当强度的制动,从而提高另一侧驱动轮的附着利用率,提高车辆的通过能力。当车辆的行驶状况恢复正常后,电子差速锁即停止工作。同普通车辆相比,带有EDS的车辆可以更好地利用地面附着力,来提高车辆的运行性。(文/图 汽车之家)
[汽车之家 百科] 中央差速器锁是安装在中央差速器上的一种锁止机构,用于四轮驱动车。 其作用是为了提高汽车在坏路面上的通过能力,即当汽车的一个驱动桥空转时,能迅速锁死差速器,使两驱动桥变为刚性联接。这样就可以把大部分的扭矩甚至全部扭矩传给不滑转的驱动桥,充分利用它的附着力而产生足够牵引力,使汽车能够继续行驶。 下面通过这段《家家百科》视频,快速了解一下差速器/差速锁: 更多精彩视频,尽在汽车之家视频频道 分时四驱车辆虽然有前后50:50的动力锁止功能,但是由于它并没有中央差速器,所以不具备此功能,如牧马人、哈弗H5等车型。但是并不是所有拥有分动箱的车辆都没有中央差速器锁止功能,例如奔驰G级和三菱的超选四驱,它们在分动箱的基础上增加了中央差速器,所以具备此项功能的依据就是,在有中央差速器的基础上才可能会有此功能。(文/图 汽车之家)
[汽车之家 百科] 前桥限滑差速器位于车辆两个前车轮之间,它可以弥补普通差速器由于车轮附着力低或悬空而导致车轮空转,造成大量动力流失,影响车辆脱困的弊端。 下面通过这段《家家百科》视频,快速了解一下差速器/差速锁: 更多精彩视频,尽在汽车之家视频频道 差速器 在此之前我们先来了解一下什么是差速器,以及为什么需要差速器?顾名思义,“差速器”就是用来让车轮转速产生差异的,在转弯的情况下可以使左右车轮进行合理的扭矩分配,来达到合理的转弯效果。汽车在弯道行驶,内外两侧车轮的转速有一定的差别,外侧车轮的行驶路程长,转速也要比内部车轮的转速高,这个时候就需要差速器来调节。 那么这个过程是如何实现的呢?首先我们来看看普通差速器的构成。差速器主要由行星齿轮、齿轮架以及左右半轴齿轮构成。在传动轴和驱动桥的结合点上,我们能看到一个半径比较大的从动齿轮,由于输入轴主动齿轮半径比较小,因此动力从此齿轮传递到半径比较大的从动齿轮的过程中就能实现一个减速增矩的过程。 接下来减速器从动齿轮带动着行星齿轮架一起运转,由于左右输出轴和行星齿轮架是相连的,因此左右输出轴会跟着一起转动,而左右半轴齿轮就会跟着一起运转,而实现“差速”的关键就是两个和左右半轴齿轮相垂直的行星齿轮。这两个行星齿轮和左右车轮都咬合着,齿轮咬合方式能够让左右两个齿轮达到一个互相抵制的效果。 当汽车直线行驶的时候,左右半轴齿轮的扭矩和转速都是相同的,因此和行星齿轮结合的时候左侧和右侧能够互相抵消,这个时候行星齿轮是不运动的。遇到转弯情况,内侧车轮要比外侧车轮受到的阻力大,这个时候左右半轴齿轮的扭矩不同,就会导致行星齿轮的转动,行星齿轮能给内侧齿轮一个阻力扭矩实现减速,同时也能给外侧齿轮增速,这样外侧齿轮比内侧齿轮的转速快,实现了顺利的转弯。 限滑差速器 普通差速器有一种弊端,那就是由于车轮悬空而导致空转,一旦发生类似的情况,差速器将动力源源不断的传给没有阻力的空转车轮,车辆不但不能向前运动,大量的动力也会流失。这时候就需要一种差速器来解决这样的情况,就是下面介绍的限滑差速器。 限滑差速器的英文简写为LSD,是Limited Slip Differential的缩写,而LSD的主要功能就是在工作时使左右车轮一同运转,而且将左右车轮的转速差控制在一定范围之内,以车辆保证正常的行进。根据实现方式以及机件结构的不同,LSD可细分为扭力感应型、黏耦合型、螺旋齿轮式、标准机械式LSD等多种形式。虽然实现限滑差速的过程不同,最终目的是一致的。 当驾驶一辆装有LSD的车,其中一只驱动轮发生空转时,LSD会控制两只车轮动力输出,阻止空转的车轮不会继续空转,使另一只车轮也有足够大的动力从而帮助车辆前进;在加速过弯时,输出扭力和离心力迫使车辆内轮扬起离开地面或产生打滑现象,而LSD装置也会将动力尽量转移到外侧车轮,因此可以帮助驾驶者提高过弯的速度,以此加强了操控性能。 差速锁 差速锁的作用是当一个驱动轮打滑时,将差速器壳与半轴锁紧成一体,使差速器失去差速作用,可以把全部扭矩转移到另一侧驱动轮上。差速锁很好的解决了汽车在一侧车轮打滑时出现的动力传输的问题,也就是锁止差速器,让差速器不再起作用,左右两侧的驱动轮均可得到相同的扭矩。 前桥差速锁 前桥差速锁是差速器的锁止机构,位于前轮之间,来应对车轮失去附着力无法脱困的情况。差速锁和差速器起到完全相反的作用,也就是不让差速器工作,让两侧的车辆转速相同。比如一侧的车轮卡死另一侧车轮打滑的情况下,差速器就会起作用了,因为差速器的作用就是允许两侧车轮出现速度差,这样,被卡死的一侧车轮仍静止不动,而另一侧车轮则会因为差速器的作用而疯狂的旋转,一侧卡死,一侧狂转,汽车自然也就无法前行被困住。 为了让动力能够正常的传递到那个“静止”的车轮上,就必须有差速锁,它可以将两个半轴进行钢性连接,使其成为一个整体,这样两侧的车轮都可以得到相同的动力,使车辆可以摆脱困境,这就是差速锁的作用。典型具备前桥限滑差速锁的车例如奔驰G级、奔驰G级 AMG、牧马人Rubicon等车型。 电子差速锁 市面上还存在所谓电子差速锁,其实电子差速锁并没有一个客观存在的实体,它是一项ABS/ESP系统的扩展功能。 英文简称为EDS,又称为EDL。它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的加速打滑进行控制。EDS的工作原理比较容易理解。在汽车加速过程中,当电子控制单元根据轮速信号判断出某一侧驱动轮打滑时,EDS就自动开始工作,通过液压控制单元对该车轮进行适当强度的制动,从而提高另一侧驱动轮的附着利用率,提高车辆的通过能力。当车辆的行驶状况恢复正常后,电子差速锁即停止工作。同普通车辆相比,带有EDS的车辆可以更好地利用地面附着力,来提高车辆的运行性。(文/图 汽车之家)
[ 汽车之家 百科] 限滑差速器位于车辆轮间或轴间,弥补普通差速器的由于车轮悬空而导致其空转的设备,差速锁是差速器的锁止机构,用来锁止轮间差速器(左右半轴间)或者轴间差速器(前后驱动桥间),来应对单个或多个车轮失去附着力无法脱困的情况。 下面通过这段《家家百科》视频,快速了解一下差速器/差速锁: 更多精彩视频,尽在汽车之家视频频道 一、差速器 在此之前我们先来了解一下什么是差速器,以及为什么需要差速器?顾名思义,“差速器”就是用来让车轮转速产生差异的,在转弯的情况下可以使左右车轮进行合理的扭矩分配,来达到合理的转弯效果。汽车在弯道行驶,内外两侧车轮的转速有一定的差别,外侧车轮的行驶路程长,转速也要比内部车轮的转速高,这个时候就需要差速器来调节。 那么这个过程是如何实现的呢?首先我们来看看普通差速器的构成。差速器主要由行星齿轮、齿轮架以及左右半轴齿轮构成。在传动轴和驱动桥的结合点上,我们能看到一个半径比较大的从动齿轮,由于输入轴主动齿轮半径比较小,因此动力从此齿轮传递到半径比较大的从动齿轮的过程中就能实现一个减速增矩的过程。 接下来减速器从动齿轮带动着行星齿轮架一起运转,由于左右输出轴和行星齿轮架是相连的,因此左右输出轴会跟着一起转动,而左右半轴齿轮就会跟着一起运转,而实现“差速”的关键就是两个和左右半轴齿轮相垂直的行星齿轮。这两个行星齿轮和左右车轮都咬合着,齿轮咬合方式能够让左右两个齿轮达到一个互相抵制的效果。 当汽车直线行驶的时候,左右半轴齿轮的扭矩和转速都是相同的,因此和行星齿轮结合的时候左侧和右侧能够互相抵消,这个时候行星齿轮是不运动的。遇到转弯情况,内侧车轮要比外侧车轮受到的阻力大,这个时候左右半轴齿轮的扭矩不同,就会导致行星齿轮的转动,行星齿轮能给内侧齿轮一个阻力扭矩实现减速,同时也能给外侧齿轮增速,这样外侧齿轮比内侧齿轮的转速快,实现了顺利的转弯。 限滑差速器 普通差速器有一种弊端,那就是由于车轮悬空而导致空转,一旦发生类似的情况,差速器将动力源源不断的传给没有阻力的空转车轮,车辆不但不能向前运动,大量的动力也会流失。这时候就需要一种差速器来解决这样的情况,就是下面介绍的限滑差速器。 限滑差速器的英文简写为LSD,是Limited Slip Differential的缩写,而LSD的主要功能就是在工作时使左右车轮一同运转,而且将左右车轮的转速差控制在一定范围之内,以车辆保证正常的行进。根据实现方式以及机件结构的不同,LSD可细分为扭力感应型、黏耦合型、螺旋齿轮式、标准机械式LSD等多种形式。虽然实现限滑差速的过程不同,最终目的是一致的。 当驾驶一辆装有LSD的车,其中一只驱动轮发生空转时,LSD会控制两只车轮动力输出,阻止空转的车轮不会继续空转,使另一只车轮也有足够大的动力从而帮助车辆前进;在加速过弯时,输出扭力和离心力迫使车辆内轮扬起离开地面或产生打滑现象,而LSD装置也会将动力尽量转移到外侧车轮,因此可以帮助驾驶者提高过弯的速度,以此加强了操控性能。 二、差速锁 差速锁的作用是当一个驱动轮打滑时,将差速器壳与半轴锁紧成一体,使差速器失去差速作用,可以把全部扭矩转移到另一侧驱动轮上。差速锁很好的解决了汽车在一侧车轮打滑时出现的动力传输的问题,也就是锁止差速器,让差速器不再起作用,左右两侧的驱动轮均可得到相同的扭矩。 1、前桥差速器锁 前桥差速锁是差速器的锁止机构,位于前轮之间,来应对车轮失去附着力无法脱困的情况。差速锁和差速器起到完全相反的作用,也就是不让差速器工作,让两侧的车辆转速相同。比如一侧的车轮卡死另一侧车轮打滑的情况下,差速器就会起作用了,因为差速器的作用就是允许两侧车轮出现速度差,这样,被卡死的一侧车轮仍静止不动,而另一侧车轮则会因为差速器的作用而疯狂的旋转,一侧卡死,一侧狂转,汽车自然也就无法前行被困住。 为了让动力能够正常的传递到那个“静止”的车轮上,就必须有差速锁,它可以将两个半轴进行钢性连接,使其成为一个整体,这样两侧的车轮都可以得到相同的动力,使车辆可以摆脱困境,这就是差速锁的作用。典型具备前桥限滑差速锁的车例如奔驰G级、奔驰G级 AMG、牧马人Rubicon等车型。 2、中央差速器锁 中央差速器锁是安装在中央差速器上的一种锁止机构,用于四轮驱动车。 其作用是为了提高汽车在坏路面上的通过能力,即当汽车的一个驱动桥空转时,能迅速锁死差速器,使两驱动桥变为刚性联接。这样就可以把大部分的扭矩甚至全部扭矩传给不滑转的驱动桥,充分利用它的附着力而产生足够牵引力,使汽车能够继续行驶。 分时四驱车辆虽然有前后50:50的动力锁止功能,但是由于它并没有中央差速器,所以不具备此功能,如牧马人、哈弗H5等车型。但是并不是所有拥有分动箱的车辆都没有中央差速器锁止功能,例如奔驰G级和三菱的超选四驱,它们在分动箱的基础上增加了中央差速器,所以具备此项功能的依据就是,在有中央差速器的基础上才可能会有此功能。 3、后桥差速器锁 后桥差速锁是差速器的锁止机构,位于后轮之间,来应对车轮失去附着力无法脱困的情况。差速锁和差速器起到完全相反的作用,也就是不让差速器工作,让两侧的车辆转速相同。比如一侧的车轮卡死另一侧车轮打滑的情况下,差速器就会起作用了,因为差速器的作用就是允许两侧车轮出现速度差,这样,被卡死的一侧车轮仍静止不动,而另一侧车轮则会因为差速器的作用而疯狂的旋转,一侧卡死,一侧狂转,汽车自然也就无法前行被困住。 为了让动力能够正常的传递到那个“静止”的车轮上,就必须有差速锁,它可以将两个半轴进行钢性连接,使其成为一个整体,这样两侧的车轮都可以得到相同的动力,使车辆可以摆脱困境,这就是差速锁的作用。典型具备前桥限滑差速锁的车例如奔驰G级、奔驰G级 AMG、牧马人Rubicon等车型。 电子差速锁 市面上还存在所谓电子差速锁,其实电子差速锁并没有一个客观存在的实体,它是一项ABS/ESP系统的扩展功能。 英文简称为EDS,又称为EDL。它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的加速打滑进行控制。EDS的工作原理比较容易理解。在汽车加速过程中,当电子控制单元根据轮速信号判断出某一侧驱动轮打滑时,EDS就自动开始工作,通过液压控制单元对该车轮进行适当强度的制动,从而提高另一侧驱动轮的附着利用率,提高车辆的通过能力。当车辆的行驶状况恢复正常后,电子差速锁即停止工作。同普通车辆相比,带有EDS的车辆可以更好地利用地面附着力,来提高车辆的运行性。(文/图 汽车之家)
[汽车之家 百科] 多轴驱动的汽车,各驱动桥间由传动轴相连。为使各驱动桥有可能具有不同的输入角速度,以消除各桥驱动轮的滑动现象,可以在各驱动桥之间装设中央差速器,也称为轴间差速器。 车辆在行驶过程中不光只有直线行驶,还有各种角度的弯道,当车辆行驶在弯道中时,四个车轮的轨迹是四条半径不同的圆弧。这就造成四个车轮在弯中的转速不同,如果车轮只能以同一转速转动,那车辆根本无法转弯,就算强行转向也会因为车轮转速差而折断中间的车轴。这时就需要安装差速器来实现差速,将发动机输出轴上的一个固定转速分解成不同的转速传递到车轮。 汽车转向时,前轮转弯半径比同侧的后轮要大,因此前轮的转速要比后轮快,以至四个车轮走的路线完全不一样,所以四驱车则需要中央差速器来分配前后轴扭矩。 中央差速器种类有: 开放式中央差速器、多片离合器式差速器、托森差速器和粘性联轴节式差速器。 一、开放式中央差速器 开放式差速器就是没有任何限制,可以在汽车转弯时正常工作的差速器,行星齿轮组没有任何锁止装置,假如一辆四驱车配备了前中后三个开放式差速器,那么如果其中一个轮子打滑,那么这个车的全部动力都会浪费在这个车轮上,而其余三个车轮则无法到的动力。 优点:没有特别的优点,因为差速是汽车正常行驶的必备条件; 缺点:在越野车领域,开放式差速器会影响非铺装路面的脱困性。 二、多片离合器式差速器 多片离合器式差速器依靠湿式多片离合器产生差动转矩。这种系统多用作适时四驱系统的中央差速器使用。其内部有两组摩擦盘,一组为主动盘,一组为从动盘。主动盘与前轴连接,从动盘与后轴连接。两组盘片被浸泡在专用油中,二者的结合和分离依靠电子系统控制。 在直线行驶时,前后轴的转速相同,主动盘与从动盘之间没有转速差,此时盘片分离,车辆基本处于前驱或后驱状态,可达到节省燃油的目的。在转弯过程中,前后轴出现转速差,主、从动盘片之间也产生转速差。但由于转速差没有达到电子系统预设的要求,因而两组盘片依然处于分离状态,此时车辆转向不受影响。 当前后轴的转速差超过一定限度,例如前轮开始打滑,电控系统会控制液压机构将多片离合器压紧,此时主动盘与从动盘开始发生接触,类似离合器的结合,扭矩从主动盘传递到从动盘上从而实现四驱。 多片摩擦式限滑差速器的接通条件和扭矩分配比例由电子系统控制,反应速度快,部分车型还具备手动控制的“LOCK”功能,即主、从动盘片可保持全时结合状态,功能接近专业越野车的四驱锁止状态。但摩擦片最多只能传递50%的扭矩给后轮,并且高强度的使用会时摩擦片过热而失效。 优点:反映速度很快,可瞬间结合;多数车型都是电控结合,无需手动控制; 缺点:最多只能将50%的动力传递给后轮,高负荷工作时容易过热。 三、托森差速器 托森(Torsen)这个名字的由来取Torque-sensing Traction——感觉扭矩牵引,Torsen的核心是蜗轮、蜗杆齿轮啮合系统,从Torsen差速器的结构视图中可以看到双蜗轮、蜗杆结构,正是它们的相互啮合互锁以及扭矩单向地从蜗轮传送到蜗杆齿轮的构造实现了差速器锁止功能,这一特性限制了滑动。在在弯道正常行驶时,前、后差速器的作用是传统差速器,蜗杆齿轮不影响半轴输出速度的不同,如车向左转时,右侧车轮比差速器快,而左侧速度低,左右速度不同的蜗轮能够严密地匹配同步啮合齿轮。此时蜗轮蜗杆并没有锁止,因为扭矩是从蜗轮到蜗杆齿轮。而当一侧车轮打滑时,蜗轮蜗杆组件发挥作用,通过托森差速器或液压式多盘离合器,极为迅速地自动调整动力分配。 当车辆正常行驶的时候,差速器壳P转动,同时带动蜗杆3和4转动,此时3和4之间没有相对转动,于是红色的1轴和绿色的2轴以同一个速度旋转。而当一侧车轴遇到较大的阻力而另一侧车轴空转的时候,例如红色车轴遇到较大的阻力,则一开始它静止不动,而差速器壳还在旋转,于是带动蜗杆齿轮4沿着红色轴滚动,4滚动的同时又带动3旋转,但是3与绿色的车轴2有自锁的效果,所以3的转动并不能带动绿色车轴2转动,于是3停止转动,同时又使得4也停止转动,于是4只能随着差速器壳的转动带动红色车轴旋转,即将扭矩分配给了红色车轴,车辆脱困。 最核心的装置就是中央扭矩感应自锁式差速器,它可以根据行驶状态使动力输出在前后桥间以25:75~75:25连续变化,而且反应十分迅速,几乎不存在滞后(扭矩感应自锁式差速器的特点在前面也详细分析过),而且有电子稳定程序的支持,更进一步提高了动力分配的主动性。 简单地说,托森差速器就是一个全自动纯机械差速器,即不需要人为控制+100%可靠的+传动直接的限滑差速器,从某个角度来说是一种很均衡的设计。 优点:能够在瞬间对驱动轮之间出现的阻力差提供反馈,分配扭矩输出,而且锁止特性是线性的,能够在一个相对宽泛的扭矩输出范围内进行调节; 缺点:没有两驱状态;差速器限滑能力有限,动力无法完全传递到有某一车轮。 四、粘性联轴节式差速器 粘性联轴节式差速器,这种结构的差速器是当今全轮驱动汽车上自动分配动力的灵巧的装置。它通常安装在以前轮驱动为基础的全轮驱动汽车上。这种汽车平时按前轮驱动方式行驶。粘性联轴节的最大特点就是不需驾驶员操纵,就可根据需要自动把动力分配给后驱动桥。 粘性联轴节的工作原理,有点类似于多片离合器。在输入轴上装有许多内板,插在输出轴壳体内的许多外板当中,并充入高粘度的硅油。输入轴与前置发动机上的变速分动装置相连,输出轴与后驱动桥相连。 在正常行驶时,前后车轮没有转速差,粘性联轴节不起作用,动力不分配给后轮,汽车仍然相当于一辆前轮驱动汽车。 汽车在冰雪路面上行驶时,前轮出现打滑空转,前后车轮出现较大的转速差。粘性联轴节的内、外板之间的硅油受到搅动开始受热膨胀,产生极大的粘性阻力,阻止内外板间的相对运动,产生了较大的扭矩。这样,就自动地把动力传送给后轮,汽车就转变成全轮驱动汽车。 在汽车转向时,粘性联轴节还可吸收前后车轮由于内轮差而产生的转速差,起到前后差速器的作用。在汽车制动时,它还可以防止后轮先抱死的现象。 优点:尺寸紧凑、结构简单、生产成本低; 缺点:反应速度慢,扭矩分配比例小,结合和分离不可手动控制,高负荷工作时因为过热可能会失效。(文/图 汽车之家)
[汽车之家 百科] 在讲解差速器有哪些类型之前,首先我们来了解一下什么是差速器? 在转弯时,左右半轴间的车轮、同侧车身前后车轮的行驶轨迹都是不一样的。如下图这辆右转的汽车,弯道用黄色标记,靠近弯道的蓝色车轮其行驶轨迹要远远小于远离弯道侧的车轮,因此如果两个车轮间只存在一个硬轴相连,那么转弯时外侧车轮就会因为转速差的缘故产生滑动摩擦,这样不仅乘坐舒适性不佳,车辆稳定性不好,还会造成轮胎不必要的磨损,更重要的是会对车辆安全性产生影响。因此,差速器便出现了。 如果两侧车轮没有转速差或转速差不大时,差速器并不会工作。如果两侧车轮转速差过大,那么差速器内的齿轮组会协同工作将内外侧车轮转速差抵消。 开放式差速器 布置位置:前后轴间、左右轮间 顾名思义,开放式差速器就是没有任何限制,它既可以布置在前后轴间,又可以布置在左右轮间。一般布置在轴间的是直线式差速器,布置在轮间的是锥齿轮差速器。如果您觉得理解起来费劲,那么只要记住开放式差速器其行星齿轮组没有任何锁止装置,它是汽车正常行驶的必备条件即可。 当两侧车轮与地面之间附着力不等时,两侧车轮作用于道路的驱动力只能取决于附着力较小的一侧。举个例子,当车辆一侧车轮位于冰面打滑,另一侧在沥青路面时。沥青路面上车轮所传递转矩不会大于冰面上打滑车轮所传递的车轮转矩,也就意味着车辆无法前进。 限滑差速器 显然,车辆需要通过克服车轮打滑来进行脱困,那么对打滑车轮加以限制这类想法便应运而生,下面这些类型的差速器便可起到限制车轮“打滑”的作用。目前市面上常见的限滑方式有依靠电子辅助制动系统起到限滑作用、多片离合器式限滑差速器、采用蜗杆机构的扭矩感应式限滑差速器、采用粘性联结轴的限滑差速器、机械锁式限滑差速器等。 1)依靠电子辅助制动系统起到限滑作用 这种限滑系统是利用轮速传感器收集到的信息与其它传感器收集到的信息对车轮的工作状态和车辆行驶状态作出判断,当监测到车轮将发生打滑或已经打滑时,ESP会对车轮实施制动,不同品牌的车型其电子限滑程度也各不相同,这也是直接影响车辆的脱困能力的重要因素之一。 电子辅助系统对车轮实施制动就相当于提高了打滑车轮这一侧的附着系数,使传递到轮端的有效扭矩提升,只要这个通过制动带来的“附着系数”比外侧有附着力车轮的附着系数高,差速器就能够传递足够的驱动转矩驱动外侧车轮转动,从而帮助车辆脱困。很多城市SUV开始利用“制动”来进行轮间的扭矩分配,帮助车辆提高公路行驶性能和通过能力。 2)多片离合器式限滑差速器 使用位置:前后轴间、左右轮间 多片离合器式限滑差速器内部一般有两组摩擦盘,一组为主动盘,一组为从动盘。主动盘与前轴连接,从动盘与后轴连接。两组盘片被浸泡在专用油中,二者的结合和分离依靠电子系统控制。 由于多片离合器式限滑差速器拥有反应速度很快、可瞬间结合、电控结合,无需手动控制等优点,下至20万元左右人民币的适时四驱SUV,上到百万元人民币的全时四驱SUV身上均可以看到它的身影。在强调通过性或者是定位高端的SUV上,它们装配多片离合器式限滑差速器的分动箱中还会加入低速齿轮,可以起到扭矩放大的作用,能起到弥补车辆在复杂路况下发动机扭矩不足的劣势。 -采用多片离合器式限滑差速器的全时四驱 上图就是奔驰ML350采用的四驱结构,与发动机横置布局为基础的四驱系统的多片离合器的传动方向不同,它的多片离合器式限滑差速器负责向前桥分配动力。 -采用多片离合器式限滑差速器的适时四驱 -布置在左右轮间的多片离合器式限滑差速器 虽然其具有反应速度很快、可瞬间结合、无需手动控制等优点,但是高负荷时容易过热、由于非“硬”连接,还会存在打滑的缺点均是无法回避的事实,所以装配这类限滑差速器的四驱车型用武之地显然不是载着您“披荆斩棘”、翻沟越坎儿“荒野求生”之类。 3)托森自锁式限滑差速器 使用位置:前后轴间、左右轮间 托森是Torsen的音译,这个名字取自Torque-sensing Traction的单词头几个字母的组合,中文名称为扭矩感应式限滑差速器。它可以根据各个车轮对牵引力的需求而分配扭矩输出,这样的分配完全靠机械装置来完成,反应迅速而准确。整套系统的核心是蜗轮、蜗杆齿轮啮合系统,扭矩分配则是依靠啮合系统的自锁功能实现的。 由于托森差速器具有反应速度快的优点,因此它被众多车辆运用到中央差速器以及轮间差速器上。目前为止,其经过了A、B、C、三代的发展。 4)粘性联轴节式限滑差速器 使用位置:前后轴间 粘性联轴节式差速器通常安装在以前轮驱动为基础的四轮驱动汽车上。其特点也是不需驾驶员操纵,就可根据需要自动把动力分配给后驱动桥。 当前轮出现打滑时,前后轮就会出现较大的转速差(前轮转速远比后轮快),此时,在前半段中央传动轴的带动下,粘性联轴节内部的硅油会被搅动起来,基于其受热膨胀的物理特性,离合器片会被挤压,进而实现前后两段传动轴近乎刚性的连接状态,前轮空转流失的动力便可被输送至后轮(受结构所限,这部分动力最多不会超过发动机输出动力的30%)。 这种差速器最大的缺点是四驱系统迟滞性较明显,且这种动力传递方式效率不高,所以采用这种差速器的车辆其定位在于简单条件下的烂路行驶,高强度的非铺装路面通过性显然不是它的“专长”。 此外请您注意,装配了这种粘性联轴节式限滑差速器的车辆是不允许采用将驱动轮抬起的方式进行拖车的,由于该装置不具备完全切断的能力,如果采用这种方式进行拖车,则刚好满足了它的限滑条件(前轮不动,后轮旋转),使得粘性联轴节将前后两段传动轴进行连接,由于前后传动轴与各自的车桥不具备差速的能力,所以,这会给四驱系统带来损伤。 5)机械锁式差速器 使用位置:前后轴间、左右轮间 上面提到的限滑是在车辆一侧车轮打滑时通过部分限制左右车轮的相对转动,将部分的发动机扭矩传递到不打滑的车轮上差速器,但在大部分情况下由于传递的扭矩有限,所以还是存在无法帮助车辆获得足够牵引力脱困的情况。 这类差速器同样无需驾驶员手动控制就能实现完全锁止以及解锁,同时具有结构简单、无需含有特殊添加剂的齿轮油、维护成本较低等优点。我们熟悉的伊顿式机械锁差速器便是其中的代表,陆风X8、长城风骏6皮卡均有搭载。 机械锁式差速器在限滑差速器上进一步改善,在一侧车轮打滑的情况下,触发机械锁合机构将车桥完全锁死,将发动机扭矩100%传递到有抓地力的有效车轮上,从而提供足够的牵引力帮助车辆驶出困境。(文/图 汽车之家)